Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Shared somatosensory and motor functions in musicians.

Identifieur interne : 000B65 ( Main/Exploration ); précédent : 000B64; suivant : 000B66

Shared somatosensory and motor functions in musicians.

Auteurs : Moe Hosoda [Japon] ; Shinichi Furuya [Japon]

Source :

RBID : pubmed:27886250

Descripteurs français

English descriptors

Abstract

Skilled individuals are characterized by fine-tuned perceptual and motor functions. Here, we tested the idea that the sensory and motor functions of highly-trained individuals are coupled. We assessed the relationships among multifaceted somatosensory and motor functions of expert pianists. The results demonstrated a positive covariation between the acuity of weight discrimination and the precision of force control during piano keystrokes among the pianists but not among the non-musicians. However, neither the age of starting musical training nor the total amount of life-long piano practice was correlated with these sensory-motor functions in the pianists. Furthermore, a difference between the pianists and non-musicians was absent for the weight discrimination acuity but present for precise force control during keystrokes. The results suggest that individuals with innately superior sensory function had finer motor control only in a case of having undergone musical training. Intriguingly, the tactile spatial acuity of the fingertip was superior in the pianists compared with the non-musicians but was not correlated with any functions representing fine motor control among the pianists. The findings implicate the presence of two distinct mechanisms of sensorimotor learning elicited by musical training, which occur either independently in individual sensorimotor modalities or through interacting between modalities.

DOI: 10.1038/srep37632
PubMed: 27886250
PubMed Central: PMC5122843


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Shared somatosensory and motor functions in musicians.</title>
<author>
<name sortKey="Hosoda, Moe" sort="Hosoda, Moe" uniqKey="Hosoda M" first="Moe" last="Hosoda">Moe Hosoda</name>
<affiliation wicri:level="3">
<nlm:affiliation>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Japon</country>
<wicri:regionArea>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Furuya, Shinichi" sort="Furuya, Shinichi" uniqKey="Furuya S" first="Shinichi" last="Furuya">Shinichi Furuya</name>
<affiliation wicri:level="3">
<nlm:affiliation>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Japon</country>
<wicri:regionArea>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27886250</idno>
<idno type="pmid">27886250</idno>
<idno type="doi">10.1038/srep37632</idno>
<idno type="pmc">PMC5122843</idno>
<idno type="wicri:Area/Main/Corpus">000A66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A66</idno>
<idno type="wicri:Area/Main/Curation">000A66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A66</idno>
<idno type="wicri:Area/Main/Exploration">000A66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Shared somatosensory and motor functions in musicians.</title>
<author>
<name sortKey="Hosoda, Moe" sort="Hosoda, Moe" uniqKey="Hosoda M" first="Moe" last="Hosoda">Moe Hosoda</name>
<affiliation wicri:level="3">
<nlm:affiliation>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Japon</country>
<wicri:regionArea>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Furuya, Shinichi" sort="Furuya, Shinichi" uniqKey="Furuya S" first="Shinichi" last="Furuya">Shinichi Furuya</name>
<affiliation wicri:level="3">
<nlm:affiliation>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Japon</country>
<wicri:regionArea>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fingers (physiology)</term>
<term>Humans (MeSH)</term>
<term>Motor Skills (physiology)</term>
<term>Music (MeSH)</term>
<term>Regression Analysis (MeSH)</term>
<term>Somatosensory Cortex (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de régression (MeSH)</term>
<term>Aptitudes motrices (physiologie)</term>
<term>Cortex somatosensoriel (physiologie)</term>
<term>Doigts (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Musique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Aptitudes motrices</term>
<term>Cortex somatosensoriel</term>
<term>Doigts</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fingers</term>
<term>Motor Skills</term>
<term>Somatosensory Cortex</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Music</term>
<term>Regression Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de régression</term>
<term>Humains</term>
<term>Musique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Skilled individuals are characterized by fine-tuned perceptual and motor functions. Here, we tested the idea that the sensory and motor functions of highly-trained individuals are coupled. We assessed the relationships among multifaceted somatosensory and motor functions of expert pianists. The results demonstrated a positive covariation between the acuity of weight discrimination and the precision of force control during piano keystrokes among the pianists but not among the non-musicians. However, neither the age of starting musical training nor the total amount of life-long piano practice was correlated with these sensory-motor functions in the pianists. Furthermore, a difference between the pianists and non-musicians was absent for the weight discrimination acuity but present for precise force control during keystrokes. The results suggest that individuals with innately superior sensory function had finer motor control only in a case of having undergone musical training. Intriguingly, the tactile spatial acuity of the fingertip was superior in the pianists compared with the non-musicians but was not correlated with any functions representing fine motor control among the pianists. The findings implicate the presence of two distinct mechanisms of sensorimotor learning elicited by musical training, which occur either independently in individual sensorimotor modalities or through interacting between modalities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27886250</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Shared somatosensory and motor functions in musicians.</ArticleTitle>
<Pagination>
<MedlinePgn>37632</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep37632</ELocationID>
<Abstract>
<AbstractText>Skilled individuals are characterized by fine-tuned perceptual and motor functions. Here, we tested the idea that the sensory and motor functions of highly-trained individuals are coupled. We assessed the relationships among multifaceted somatosensory and motor functions of expert pianists. The results demonstrated a positive covariation between the acuity of weight discrimination and the precision of force control during piano keystrokes among the pianists but not among the non-musicians. However, neither the age of starting musical training nor the total amount of life-long piano practice was correlated with these sensory-motor functions in the pianists. Furthermore, a difference between the pianists and non-musicians was absent for the weight discrimination acuity but present for precise force control during keystrokes. The results suggest that individuals with innately superior sensory function had finer motor control only in a case of having undergone musical training. Intriguingly, the tactile spatial acuity of the fingertip was superior in the pianists compared with the non-musicians but was not correlated with any functions representing fine motor control among the pianists. The findings implicate the presence of two distinct mechanisms of sensorimotor learning elicited by musical training, which occur either independently in individual sensorimotor modalities or through interacting between modalities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hosoda</LastName>
<ForeName>Moe</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furuya</LastName>
<ForeName>Shinichi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005385" MajorTopicYN="N">Fingers</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009048" MajorTopicYN="N">Motor Skills</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013003" MajorTopicYN="N">Somatosensory Cortex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27886250</ArticleId>
<ArticleId IdType="pii">srep37632</ArticleId>
<ArticleId IdType="doi">10.1038/srep37632</ArticleId>
<ArticleId IdType="pmc">PMC5122843</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Prog Brain Res. 2015;217:37-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2014 Aug;25(8):1608-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24986855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 09;9(1):e84402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24416229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 1999 Dec;9(6):718-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Nov 8;76(3):486-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23141061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2004 Jan;19(2):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14725642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20470-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19884506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2014 Sep 5;275:444-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24973654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2016 Feb;39(2):114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26774345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2016 Feb 1;126:106-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26584868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2014 Jul;25(7):1325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24815610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol Hum Percept Perform. 2010 Apr;36(2):508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2003 Jan 20;14(1):157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12544849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2011 Oct;47(9):1126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 27;5:15750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26502770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2015 Oct 21;35(42):14316-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26490869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hand Surg Am. 2015 Oct;40(10 ):1996-2002.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26253604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2011 Dec;106(6):2849-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21880938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2012 Sep;13(9):658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22903222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2014 Sep;25(9):1795-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2016 Jun;133:477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27034024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2002 Jun;3(6):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Bull. 2016 Apr;142(4):427-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19164569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Neurophysiol. 2004 Apr;115(4):765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2016 Jul;26(7):3125-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26139842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mot Behav. 1999 Jun;31(2):145-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11177628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2010 Jul;21(7):914-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1148-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 1998 Nov;31(11):1063-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2010 Oct 15;53(1):26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2014 Jun 6;269:290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24709043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Plast. 2010;2010:690531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20414332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2015 Jan 06;8:1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25610384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 13;270(5234):305-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Biobehav Rev. 2015 Apr;51:126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25597654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2012 Dec;108(12):3313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22972960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2013 Sep 5;247:152-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Oct 8;23(27):9240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Hosoda, Moe" sort="Hosoda, Moe" uniqKey="Hosoda M" first="Moe" last="Hosoda">Moe Hosoda</name>
</region>
<name sortKey="Furuya, Shinichi" sort="Furuya, Shinichi" uniqKey="Furuya S" first="Shinichi" last="Furuya">Shinichi Furuya</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27886250
   |texte=   Shared somatosensory and motor functions in musicians.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27886250" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021